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Abstract We study genelalized diffusion-limited aggregation with a lifetime r, a model 
introduced by Miyazima er al. Our Monte Carlo simulations for 7 = 1 and for r = 2 
indicate that the asymptotic khaviaur is most likely to k identics1 for all finite values 
of 7 .  Our estimate for the exponent v characterizing the asymptotic regime is in strong 
disagreement with that found ty Miyazima n al. 

1. Introduction 

At high temperatures, diluted polymers at equilibrium are well described by two basic 
models: self-avoiding walks (SAWS) in the case of topologically linear polymers and 
lattice animals for branched polymers. In two dimensions, the fractal dimension d ,  of 
a SAW is exactly 413 [l], while the hest estimate known for lattice animals is d, T= 1.56 
[2]. Thus, branching appears to be a reievant parameter for these equilibrium models. 

The situation is somewhat similar in the case of the irreversible growth of clusters. 
Whereas diffusion-limited aggregation (DLA) produces ramified clusters with d,  2 1.71 
[3,4], the diffusion-limited self-avoiding walk (DLSAW) has a much lower fractal 
dimension, d ,  E 1.3 [5-71. The DLSAW differs from DLA in that, each time a new 
particle is added to the cluster, it becomes the only active tip. The next particle 
must adhere in turn to this tip and then becomes active itself. This restrictive rule 
automatically prevents branching from occuring. This model was initially introduced 
to describe rapid linear polymerization in a diluted solution of monomers. The first 
two studies of the DLsAW led to the estimates d,  = 1.27f0.02 [5] and d ,  = 1.29&0.01 
(61. These results were obtained by performing a finite-size analysis of the data for 
104 chains of 45 and 32 particles, respectively. A subsequent study of 800 chains of 

agreement with the earlier estimates. 
More recently, Miyazima ef al [8] have modified DLA by assigning a finite lifetime 

7 to the particles in the cluster. Each time a new particle is added to the cluster, 
it remains active while the next 7 particles are added, and then it becomes inactive. 
7hi generalized version of DLA (GDLA) must be equivalent to DLA when 7 - 00 

and to the DLSAW when r = 1. When 7 is greater than 1 but is finite, a crossover 
from DLA to the DLSAW is expected as the clusters grow larger than a crossover size 

!m partic!eg gave the more precise result df = 1,305 n:m2 !7j; which i5 h fair 

t Permanent address: Labontoire de Physique du Solide. UnivenilC de Nancy 1. BP 239, F-54506 
bndoeuvre-lh-Nancy, France. 
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N' - T$.  Performing numerical simulations for T =5, IO, 20, 50 and lM), Miyazima 
et a1 (81 indeed observed a crossover from DLA to a regime with a smaller fractal 
dimension, d, = 1.04 f 0.03. In a related study by Bunde and Miyazima [9], the 
particles were assigned a finite lifetime T with probability p and an infinite lifetime 
with probability 1 - p. The same estimate, d, = 1.04 f 0.03, was found in the whole 
range p > 0.5 191. 

The value of d, obtained by Miyazima ef a1 for T > 1 is considerably smaller 
than all the estimates of d, for t = 1 listed above. On the other hand, it seems very 
unlikely that the three independent estimates for the fractal dimension of the DLSAW 
are all grossly overestimated. There are two possible resolutions to this impasse. One 
is that the estimate of Miyazima et al is too low. Another possibility is that the 
asymptotic behaviour for T > 1 differs from that for T = 1. 

In this paper, we investigate this question further by performing intensive Monte 
Carlo simulations of GDLA for T = 1 and T = 2. We obtain strong numerical evidence 
that the fractal dimension d, is the same in both cases, and our estimate of d, is 
in good agreement with the results obtained earlier for the DLsAW. Thus, our work 
strongly suggest that the estimate d, = 1.04 ;t 0.03 proposed by Miyazima et a1 [8,9] 
for GDLA is in error. 

J-M Debierre and R M Bradley 

2. Results and discussion 

We performed Monte Carlo simulations on the square lattice using a DLA algorithm 
modified to incorporate the finite lifetime of the particles in the cluster. This 
algorithm is described in detail in [SI and will only be outlined here. The seed 
particle is placed at the origin of the lattice and it is assigned a lifetime T .  Each 
time a new particle is added to the cluster, it is assigned a lifetime T and all the 
other active particles have their lifetime reduced by one (a particle with lifetime zero 
becomes inactive). The release and killing radii for the diffusing particle are set to 
d = R,, + 5 and D = 10d respectively, where R,,, is the largest distance from the 
seed to any particle in the cluster. The diffusion step is Fxed to one lattice unit inside 
the release circle. When the diffusing particle moves outside the release circle, its 
distance from the origin, 6, k computed. The step size is set to 1 whenever 6 - d ,< 2 
and to 6 - d othenviswe. Finally, reflecting boundary conditions are imposed on the 
cluster [5,6], so that any step in which the diffusing particle would land on a cluster 
particle is forbidden. h c e p t  for minor details (such as the values of d and D we 
have employed), our algorithm is identical to that described in [SI. 

We have grown 2000 independent clusters, each containing 500 particles, for both 
T = 1 and for T = 2. We looked at T = 2 because this is the smallest T value greater 
than 1, and hence this is the T value where the asymptotic behaviour of GDLA will 
set in first, since the crossover tkom DLA to the DISAW occurs for N comparable to 
N' - T $  with 6 > 1 [SI. The mean radius of gyration R , ( N )  was computed as 
a function of the number N of particles in the cluster. Figure 1 is a log-log plot 
of R , / N "  as a function of N for WO different choices of the exponent v = d;' .  
Since. we expect R, to vary as N u  [5-71, the curve will be flat when the correct 
value of U is chosen, From this figure, one can immediately rule out the estimate 
U = 0.962 = (1.04)-, proposed by Miyazima el a1 [8,9] for the DLSAW. On the other 
hand, the best fit to a horizontal line for N 2 20 is obtained for v = 0.760. This 
estimate i$ close to, but slightly lower than, the value v = 0.766 * 0.001 obtained 
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hy Meakin [7]. This kind of direct analysis does not give satisfactory results when 
applied to the data for T = 2, because the crossover between the DLA and D U A W  
regimes persists until N values close to 500 are reached. A finite-size analysis is thus 
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Figure 2. The mlio R~lNo.'60 as a function of N-'. Ihe  broken line is a linear 
least-squares fit lo the dam points lor N-' < 0.006. 

In figure 2, the ratio R,/N"."" is plotted as a function of N-' for N >, 100. For 
sufficiently large N, the curve'becomes straight, indicating that the leading correction- 
to-scaling term varies as N - ' .  As a wnse uence, the intercept is non-zero and we 
have the asymptotic behaviour R, - NU. 6u for r = 2, jut as for r = 1. An 
alternative way to determine the asymptotic behaviour is to compute a finite-size 
estimator for the exponent v. For this purpose, we first plotted log R, as a function 
of log N and then performed linear fits to all the data points except those with 
N < Nu. The resulting slope gives the finite-size estimator U,( No). This estimator 
is plotted in figure 3 as a function of No, for both r = 1 and r = 2. For T = 1, the 
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Figure 3. Ihe finite-size estimator * , ( N o )  as a function of No. ?he error ban are 
included for both "1 (A) and 02 (0) .  Only the p ints  with a relative error Smaller than 
five per a n t  are displayed. 

fluctuations about the mean value U = 0.760 were taken into account to determine 
an error bar for U, and our final estimate is Y = 0.760 f 0.003. On the other hand, 
the curve for r = 2 is monotonically decreasing and, for Nu > 300, the error bars for 
U,( No)  and U*( No)  overlap. We thus conclude that vZ( Nu) - U,( N o )  as Nu - 00, 

which confirms our previous conclusion that the asymptotic behaviour is identical for 
r = 1 and r = 2. 

( a )  ( 6 )  

Figure 4. Tk.0 typical large clusters generated wilh our algorilhm. (0) 2SW panicles lor 
7 = 1 and (b) 4000 panicles for r = 2. 

One can be further convinced that this result is correct by looking at figure 4, 
where two large clusters grown with r = 1 and r = 2 are shown. This plot also 
makes it hard to believe that a fractal dimension as low as d, = 1.04 can be obtained 
for either T = 1 or r = 2. Finally, it is worth noting that the corresponding cluster 
for r = 2 obtained by Miyazima et al appears to be much more linear than ours (see 
[S ,  figure I@)]). This suggests that a subtle bias toward radial growth was accidentally 
introduced into the algorithm used by Miyazima el al. Since the DIsAW is known to 
be very sensitive to any change in the boundary conditions [7, lo], any such bias is 
likely to dramatically affect the value of d,. 
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'b conclude this section, let us mention that qualitatively similar, although much 
less precise, results were obtained by using the mean end-to-end radius instead of the 
radius of gyration. 

3. Summary 

We have performed Monte Carlo simulations for DIA with a finite lifetime r. Our 
data strongly suggest that the asymptotic behaviour is identical for r = 1 (DLSAW) 
and T = 2 (GDLA), lending support to the idea that it k identical for any finite value 
of r > 1. Our final estimate for the exponent U = d;' (U = 0.760f0.003) is in good 
agreement with those found in earlier studies of DLSAW. The present study also rules 
out the result U = 0.926 f 0.03 obtained by Miyazima et a1 for GDLA with r > 1. 
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